STRUCTURES AND SYNTHESIS OF 4a-HOMO-7,19-DINORSTEROIDS, X-RAY CRYSTALLOGRAPHY AND NMR SPECTROSCOPY+

Alexander KASAL ${ }^{a 1, *}$, Miloš BUDĚŠíNSKÝ ${ }^{a 2}$, Jan Pelnařa ${ }^{a}$, Michael A. BrUCK ${ }^{b 1, \star}$ and Michael F. Brown ${ }^{b 2}$
${ }^{a}$ Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic; e-mail: ${ }^{1}$ kasal@uochb.cas.cz, ${ }^{2}$ budesinsky@uochb.cas.cz
${ }^{b}$ Department of Chemistry, University of Arizona, Tucson, Arizona 85721, U.S.A.;
e-mail: ${ }^{1}$ mbruck@u.arizona.edu, ${ }^{2}$ mfbrown@u.arizona.edu

Received June 18, 1999
Accepted September 26, 1999

X-Ray diffraction revealed the absolute configuration of 4aß-methyl-4a-homo-7,19-dinor$5 \alpha, 10 \alpha$-androstane-3,17-dione. Detailed NMR analysis suggested that the 5α configuration existed in the starting material, 3ß-acetoxy-4a-methylidene-4a-homo-7,19-dinor5α-androst-9-en-17-one, and related compounds. Thus 5-methyl-5 5 -estr-9-ene derivatives with a leaving group in position 6β were found to react with nucleophiles to form rearranged 4a-homo-7,19-dinorandrostane derivatives with a 5α configuration.
Key words: Steroids; Antiandrogens; Solvolysis; Rearrangements; NMR Spectroscopy, ${ }^{1} \mathrm{H}$, ${ }^{13}$ C; X-Ray diffraction; Absolute configuration; Conformation analysis.

Antiandrogens comprise a series of compounds which bind to androgen receptors without affecting their conformation; the receptor complex does not bind to DNA and thus no biological response is elicited. In the rational design of antiandrogens, new compounds are sought which bind to the receptor but do not force it to expose its DNA-binding domain². One approach involved the synthesis of analogues (e.g., 4,5-seco analogues ${ }^{3}$) which were flexible upon receptor binding and did not elicit a change of its conformation. Many other synthetic steroids have been tested for antiandrogenic activity but none has been found among the 5β-steroids ${ }^{4}$. As a rule, 5β-steroids exert reduced binding to steroid binding protein ${ }^{5}$ suggesting that the absolute configuration is important. Of 4a-homo-7,19-dinorandrostane derivatives, compounds $\mathbf{1}$ and $\mathbf{2}$ were found to exert anti-

[^0]androgenic activity in vivo ${ }^{6}$. Since compound $\mathbf{1}$ had previously been ascribed a 5β configuration ${ }^{6}$, a reinvestigation of its structure became necessary. Here we present new X-ray diffraction and NMR results which suggest that a 5α configuration is present in 4 a-homo-7,19-dinorandrostane derivatives formed by nucleophilic reaction of 5-methyl-5 -estr-9-ene derivatives with a 6β leaving group. These findings are important in relation to the ring contraction/expansion synthetic methodology, as well as to the biological activities of antiandrogens.

Synthesis of these compounds was based on the experience ${ }^{7}$ that this type of skeleton was formed on treatment of 5,6 -dihalosteroids with silver salts. Later ${ }^{8}$ it was shown that such compounds were more easily accessible by solvolysis of Westphalen type steroids. Thus as shown in Scheme 1, compounds $\mathbf{3}$ and $\mathbf{4}$ on treatment with silver salts yielded products which were previously identified as $\mathbf{5 b}$ and $\mathbf{6 b}$, respectively, with a $5 \beta-\mathrm{H}$ configuration. Reduction of compounds 3, 4 and 7 with lithium aluminum hydride also gave products of rearrangement formulated previously as $\mathbf{8 b}$ and 9b. They were accompanied by 3,4 -seco derivatives, tentatively given the formula 10b and 11b, respectively, as the low stability of the dienes did not allow for detailed NMR characterization. In particular, the doubly allylic 5-position was susceptible to reaction with peroxides in solvents. M oreover, the 7-membered A ring is predisposed to transannular reactions ${ }^{9}$: diene 9 was easily converted to the $3 \beta, 10 \beta$-epoxy derivative 12 by the action of 3-chloroperoxy-benzoic acid, which was suggested earlier to have a 5β configuration (i.e. compound 12b). The structure determinations of these unstable compounds have been mainly based on chemical experiments and relatively simple ${ }^{1} \mathrm{H}$ NMR measurements.

The reaction mechanism leading to the above dienes was previously interpreted in terms of a concerted process in which a carbenium ion, formed at the carbon C6, was saturated by migration of the antiperiplanar C10-C5 bond. This argument was used to support the 5β configuration of all products, as the C-5 configuration was believed ${ }^{8}$ to have been inverted in the process.

In addition, compound $\mathbf{9}$ was converted to a mixture of diketones $\mathbf{1 3}$ and 14 by hydrogenation and oxidation. X-Ray diffraction data for single crystals of one of the diketones, compound 13, are described below. They confirm the 4a-homo-7,19-dinorandrostane skeleton and the expected the $9 \alpha, 10 \alpha$ configuration. However, the C-5 configuration is now found to be

	R^{1}	R^{2}	R^{3}
$\mathbf{3}$	Cl	$\mathrm{OOCC}\left(\mathrm{CH}_{3}\right)_{3}$	H
$\mathbf{4}$	Cl	$=\mathrm{O}$	
$\mathbf{7}$	$\mathrm{OSO}_{2} \mathrm{CH}_{3}$	$-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-$	

(ii)

	R^{1}			R^{2}
$\mathbf{1 0 a}$	$5 \alpha H$	$O H$		H
10b	$5 \beta H$	$O H$		H
11a	$5 \alpha H$		$=O$	
11b	$5 \beta H$		$=O$	

	R^{1}			R^{2}
$\mathbf{5 a}$	$5 \alpha \mathrm{H}$	Ac	$\mathrm{OOCC}\left(\mathrm{CH}_{3}\right)_{3}$	H
$\mathbf{5 b}$	$5 \beta \mathrm{H}$	Ac	$\mathrm{OOCC}\left(\mathrm{CH}_{3}\right)_{3}$	H
$\mathbf{6 a}$	$5 \alpha \mathrm{H}$	Ac	$=\mathrm{O}$	
$\mathbf{6 b}$	$5 \beta \mathrm{H}$	Ac	O	$=\mathrm{O}$
8a	$5 \alpha \mathrm{H}$	H	OH	
8b	$5 \beta \mathrm{H}$	H	OH	
9a	$5 \alpha \mathrm{H}$	H		H
9b	$5 \beta \mathrm{H}$	H		$=\mathrm{O}$

12b, $5 \beta \mathrm{H}$

(i) $\mathrm{CH}_{3} \mathrm{COOAg}$; (ii) LiAlH_{4}; (iii) MCPBA; (iv) H_{2}, Pt ; (v) $\mathrm{CrCO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$

Scheme 1
5α, thereby casting doubt on the original assignment of the configuration at carbon C-5 of the starting diene 9. The results are in agreement with a previous X-ray diffraction structural analysis of another product ${ }^{10}$ obtained from the diene 9, viz. the saturated diketone 14.

The question at what stage the 5α configuration was introduced into the molecule, has been investigated by high-field 1D and $2 \mathrm{D}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy of compounds 6a, 11a, 12a, 13 and 14 which were prepared anew immediately before NMR measurements.

NMR Analysis

A general strategy used for a complete structural assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 6a, 11a, 12a, 13 and 14 was as follows. Starting from the unambiguously assigned signals in 1D proton NMR spectrum, it was possible to deduce proton-proton coupling patterns from ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ 2D-COSY spectra and complete the structural assignment of protons in the whole molecule. The multiplicity of signals and most coupling constants $J(H, H)$ could be determined from the expanded parts of resolu-tion-enhanced 1D spectra (except those of strongly coupled spin systems or heavily overlapping regions). If necessary selective proton decoupling was used to confirm theJ values or eliminate fine splitting and/or line broadening due to long-range couplings (especially on allylic protons). The 2D-J-resolved ${ }^{1}$ H NMR spectrum was helpful in the recognition of some overlapping proton multiplets in compound 13. Stereochemical assignment of geminal alicyclic protons was derived from characteristic values of vicinal couplings or difference 1D-NOE experiments. The APT carbon-13 NMR spectra were then used to determine chemical shifts and distinguish the multiplicity of individual carbon signals. Structure assignment of $\mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3} signals was derived from ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ 2D-HMQC spectra by correlation with the previously assigned proton signals. The remaining quaternary carbons were assigned on the basis of chemical shifts. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra measured after in situ TAI-acylation ${ }^{11,12}$ of hydroxy derivatives 11a and 12a showed characteristic induced shifts in the neighborhood of OH group. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds 6a, 11a, 12a, 13 and 14 are summarized in Tables I-V. The main structure problem in these compounds was the configuration at carbon C-5 (together with the configurations at $\mathrm{C}-9$ and $\mathrm{C}-10$ in diketones $\mathbf{1 3}$ and 14) which is discussed below.

From inspection of molecular models of compound $\mathbf{6 a}$ it follows that the 5β configuration should lead to a close similarity of torsion angles $\phi(\mathrm{H} 6 \alpha, \mathrm{H} 5 \beta) \approx \phi(\mathrm{H} 6 \alpha, \mathrm{H} 8 \beta)$ and $\phi(\mathrm{H} 6 \beta, \mathrm{H} 5 \beta) \approx \phi(\mathrm{H} 6 \beta, \mathrm{H} 8 \beta)$, due to the approx-

Table I
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR parameters of compound $\mathbf{6 a}$

Chemical shifts, ppm

Carbon	$\delta(\mathrm{C})$	Proton ${ }^{\text {a }}$	$\delta(\mathrm{H})$	Hi, Hj	J	Hi, Hj	J
C-1	22.62 t	H-1 α	1.79 dddq	$1 \alpha, 1 \beta$	14.2	5,6 α	9.6
C-2	34.45 t	H-1 β	2.48 ddd	$1 \alpha, 2 \alpha$	2.9	5,6ß	5.6
C-3	76.21 d	H-2 α	$2.05{ }^{\text {b }}$	$1 \alpha, 2 \beta$	12.2	$6 \alpha, 6 \beta$	13.4
C-4	40.22 t	H-2 ${ }^{\text {r }}$	1.37 ddt	$1 \alpha, 5$	1.0	$6 \alpha, 8$	4.7
C-4a	148.85 s	H-3	4.74 tt	$1 \alpha, 8$	1.0	63,8	8.8
C-4b	114.11 t	H-4 α	2.39 dd	$1 \alpha, 11 \beta$	1.0	8.14	11.8
C-5	54.47 d	H-4 ${ }^{\text {a }}$	2.21 bdd	1 $\beta, 2 \alpha$	6.2	$11 \alpha, 11 \beta$	14.7
C-6	34.01 t	H-4(en)	4.93 bt	$1 \beta, 2 \beta$	3.3	$11 \alpha, 12 \alpha$	5.1
C-8	46.04 d	H-4b(ex)	4.97 bd	1 β, 8	40.5	$11 \alpha, 11 \beta$	2.0
C-9	$134.91 \mathrm{~s}^{\text {c }}$	H-5	3.39 m	$2 \alpha, 2 \beta$	12.7	$11 \beta, 12 \alpha$	13.0
C-10	$138.07 \mathrm{~s}^{\mathrm{c}}$	H-6 α	1.90 ddd	$2 \alpha, 3$	4.3	$11 \beta, 12 \beta$	5.4
C-11	21.22 t	H-6	1.76 ddd	$2 \alpha, 4 \alpha$	1.5	$12 \alpha, 12 \beta$	12.9
C-12	31.84 t	H-8	2.69 m	$2 \beta, 3$	10.2	$12 \alpha, 18$	0.8
C-13	48.64 s	H-11 α	2.44 ddd	3,4 α	3.3	14,15 α	5.8
C-14	52.02 d	H-11 β	$2.07{ }^{\text {b }}$	3,43	10.3	14,15 β	12.5
C-15	22.49 t	H-12 α	1.15 bdt	$4 \alpha, 4 \beta$	12.4	$15 \alpha, 15 \beta$	12.3
C-16	35.76 t	H-12 β	1.84 ddd	$4 \alpha, 4 \mathrm{~b}$ (ex)	0.8	$15 \alpha, 16 \alpha$	8.8
C-17	220.53 s	H-14	1.36 dt	4 β,4b(ex)	1.0	$15 \alpha, 16 \beta$	1.1
C-18	13.02 q	H-15 α	1.97 ddd	4阝,5	≈ 0	15 $\beta, 16 \alpha$	9.4
		H-15 β	1.62 tt	4b(en),4b(ex)	1.9	15 β,16 β	8.9
$\mathrm{CH}_{3} \mathrm{COO}$	170.23 s	H-16 α	2.09 dt	4b(en),5	1.0	16ß,16 β	19.2
$\mathrm{CH}_{3} \mathrm{COO}$	21.38 q	H-16	2.45 ddd	4b(ex),5	0.6		
		H-18(3H)	0.97 d				
		$\mathrm{CH}_{3} \mathrm{COO}$	2.02 s				

${ }^{\text {a }}$ Terms (en) and (ex) express cis- and trans-relationship between individual H-4b protons and C-5 carbon; ${ }^{\text {b }}$ signal position was determined from 2D-COSY spectrum; ${ }^{c}$ the assignment of signals may be interchanged.
imately symmetrical mutual position of protons $\mathrm{H}-5 \beta$ and $\mathrm{H}-8 \beta$ in the ring B (see Fig. 1a). Similar relations should also hold for the corresponding vicinal coupling constants; however this is not the case of the experimentally observed J values (9.6 and 4.8 Hz for $\mathrm{H}-6$ at $\delta 1.90$; 5.6 and 8.8 Hz for $\mathrm{H}-6$ at $\delta 1.76)$. This observation can be rationalized most directly by a 5α configuration with a nearly flat cyclopentane ring B and torsion angles $\phi \approx 0$ and \approx 120° for the cis- and trans-oriented protons (see Fig. 1b). To confirm the suggested 5α configuration in compound $\mathbf{6 a}$, we carried out a series of 1D-NOE difference experiments with selective irradiation of protons H-3 and $\mathrm{H}-5$. Saturation of proton $\mathrm{H}-3 \alpha$ showed, in addition to trivial NOEs in the neighboring positions (4.4% at $\mathrm{H}-4 \alpha$ and 4.1% at $\mathrm{H}-2 \alpha$), also NOEs at more distant protons $\mathrm{H}-1 \alpha$ (3.8\%) and H-5 (2.0\%). Saturation of H-5 allowed us to unambiguously assign the geminal exo-methylene protons on C-4b: the observation of a 5.1% NOE at $\delta 4.93$ indicated the $\mathrm{H}-4 \mathrm{~b}$-endo proton while the very weak negative NOE of 0.6% at $\delta 4.97$ corresponded to the H-4b-exo proton. We have observed further NOEs at H-1 α (2.3\%), H-4 α (1.3\%), H-6 (5.4\%) and even at H-14 (1.8\%). Molecular models show that the distance of $\mathrm{H}-5 \alpha$ to $\mathrm{H}-14 \alpha$ can vary between $3-4 \AA$, depending on the conformation of ring B. The ring flattening indicated by the J values (see above) gives a shorter distance of $\approx 3 \AA \AA$. All these NOE effects are consistent with the 5α configuration in compound $\mathbf{6 a}$ since the relative distance of the involved atoms would be much larger for the 5β configuration.

In compound 12a, the second-order pattern of protons on $\mathrm{C}-1$ and $\mathrm{C}-2$ and rather similar chemical shifts of the $\mathrm{H}-6 \alpha$ and $\mathrm{H}-1 \alpha$ protons made the investigation of the configuration at C-5 by NOE measurements difficult. However, these problems were circumvented by in situ acylation of compound 12a with TAI. TAI acylation of $9 \alpha-\mathrm{OH}$ induced significant downfield shifts of the $\mathrm{H}-1 \alpha$ and $\mathrm{H}-5$ protons (0.95 and 0.98 ppm), which could be in-

a

b

Fig. 1
Schematic conformation formulae of ring B in compounds $\mathbf{6} \mathbf{a}$ and $\mathbf{6 b}$ showing mutual positions of hydrogen atoms: a $5 \beta-\mathrm{H}$-configuration, b $5 \alpha-\mathrm{H}$-configuration

Table II
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR parameters of compound 12a
Chemical shifts, ppm
Coupling constants, Hz

Carbon	$\delta(\mathrm{C})$	$\begin{aligned} & \Delta \delta(\mathrm{C}) \\ & (+\mathrm{TAI}) \end{aligned}$	Proton ${ }^{\text {a }}$	$\delta(\mathrm{H})$	$\begin{aligned} & \Delta \delta(\mathrm{H}) \\ & (+\mathrm{TAI}) \end{aligned}$	Hi, Hj	J	Hi,Hj	J
C-1	26.24 t	(-4.46)	$\mathrm{H}-1 \alpha$	$2.06{ }^{\text {b }}$	(0.95)	$1 \alpha, 1 \beta$	13.9	$6 \alpha, 8$	3.3
C-2	23.90 t	(-0.34)	$\mathrm{H}-1 \beta$	1.58 ddd	(0.19)	$1 \alpha, 2 \alpha$	12.0	63,8	9.3
C-3	69.26 d	(-0.10)	$\mathrm{H}-2 \alpha$	1.57 m	(0.05)	$1 \alpha, 2 \beta$	7.2	8,14	12.6
C-4	42.07 t	(0.55)	$\mathrm{H}-2 \beta$	$1.93{ }^{\text {b }}$	(0.04)	1 $\beta, 2 \alpha$	2.2	$11 \alpha, 11 \beta$	15.0
C-4a	147.20 s	(-0.39)	H-3	3.97 m	(0.05)	1 $\beta, 2 \beta$	12.0	$11 \alpha, 12 \alpha$	5.6
C-4b	113.04 t	(2.35)	$\mathrm{H}-4 \alpha$	2.66 dp	(0.04)	$2 \alpha, 2 \beta$	13.5	$11 \alpha, 12 \beta$	2.3
C-5	60.45 d	(-6.72)	H-4	2.19 ddd	(0.07)	$2 \alpha, 3$	1.3	$11 \beta, 12 \alpha$	13.2
C-6	31.44 t	(-0.92)	H-4b(en)	4.80 t	(0.20)	$2 \alpha, 4 \alpha$	2.0	$11 \beta, 12 \beta$	6.4
C-8	49.92 d	(-0.39)	$H-4 b(x)$	4.74 t	(0.13)	2 β, 3	5.2	$12 \alpha, 12 \beta$	13.3
C-9	$82.94 \mathrm{~s}^{\text {c }}$	(13.46)	H-5	2.78 dm	(0.98)	3,4 α	2.6	$14,15 \alpha$	5.7
C-10	$84.84 \mathrm{~s}^{\text {c }}$	(-0.16)	H-6 α	2.02 ddd	(-0.04)	3,43	4.0	14,15 β	12.3
C-11	30.39 t	(0.83)	$\mathrm{H}-6 \beta$	1.87 ddd	(0.11)	$4 \alpha, 4 \beta$	15.3	$15 \alpha, 15 \beta$	12.3
C-12	30.00 t	(0.00)	H-8	2.24 ddd	(0.09)	4α, 4b(ex)	2.2	15 $\alpha, 16 \alpha$	8.9
C-13	47.39 s	(0.00)	H-11 α	2.10 ddd	(0.13)	4阝,5	1.7	$15 \alpha, 16 \beta$	1.1
C-14	48.61 d	(-0.23)	H-11 β	1.87 ddd	(0.06)	4b(en), 4b(ex)	1.9	15 1616	9.6
C-15	23.27 t	(-0.19)	H-12 α	1.51 dt	(-0.08)	5,6 α	9.8	15 1616β	8.9
C-16	36.14 t	(-0.22)	H-12 β	1.72 ddd	(0.07)	5,6ß	2.9	$16 \alpha, 16 \beta$	19.2
C-17	221.03 s	(-0.96)	H-14	2.08 dt	(-0.31)	$6 \alpha, 6 \beta$	14.3		
C-18	12.78 q	(0.25)	H-15 α	1.96 dddd	(-0.01)				
			H-15 β	1.50 ddt	(0.05)				
			H-16 α	2.11 ddd	(-0.04)				
			H-16	2.47 dd	(0.03)				
			$\mathrm{H}-18$ (3H)	0.99 s	(0.03)				

[^1]Table III
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR parameters of compound 11a

Chemical shifts, ppm Coupling constants, Hz

Carbon	$\delta(\mathrm{C})$	$\begin{aligned} & \Delta \delta(\mathrm{C}) \\ & (+\mathrm{TAI}) \end{aligned}$	Proton ${ }^{\text {a }}$	$\delta(\mathrm{H})$	$\begin{aligned} & \Delta \delta(\mathrm{H}) \\ & (+\mathrm{TAI}) \end{aligned}$	Hi, Hj	J	Hi, Hj	J
C-1	22.78 t	(-0.24)	H-1	1.89 ddd	(-0.06)	1,1'	16.0	$6 \alpha, 6 \beta$	13.2
C-2	30.79 t	(-4.30)	$\mathrm{H}-1^{\prime}$	2.20 dt	(0.03)	1,2	b	$6 \alpha, 8$	7.6
C-3	62.87 t	(4.39)	$\mathrm{H}-2$	1.55 m	(0.16)	1,2'	b	6ß,8	7.9
C-4	19.03 q	(-0.04)	$\mathrm{H}-2^{\prime}$	1.65 m	(0.18)	1',2	8.1	8,14	11.6
C-4a	148.10 s	(-0.23)	H-3	3.58 dt	(0.60)	$1^{\prime}, 2^{\prime}$	8.2	$11 \alpha, 11 \beta$	15.2
C-4b	110.29 t	(0.15)	H-3'	3.61 dt	(0.64)	1',8	<0.5	$11 \alpha, 12 \alpha$	5.2
C-5	54.73 d	(-0.04)	$\mathrm{H}-4$	1.61 dd	(0.01)	2,2'	b	$11 \alpha, 12 \beta$	1.7
C-6	33.48 t	(-0.03)	H-4b(en)	4.68 m	(0.00)	2,3	~ 6.7	$11 \beta, 12 \alpha$	13.1
C-8	45.74 d	(0.03)	H-4b(ex)	4.68 m	(0.00)	2,3'	~6.7	$11 \beta, 12 \beta$	5.6
C-9	134.94 s	(-1.08)	H-5	3.27 m	(-0.02)	2',3	~ 6.7	$12 \alpha, 12 \beta$	13.1
C-10	138.39 s	(0.89)	H-6 α	1.65 ddd	(0.01)	$2^{\prime}, 3^{\prime}$	~ 6.7	12 $\beta, 18$	<0.5
C-11	21.34 t	(0.03)	H-6	1.89 ddd	(0.01)	3,3'	10.4	14,15 α	5.8
C-12	31.56 t	(-0.08)	H-8	2.69 m	(0.00)	4,4b(en)	1.0	14,15 β	12.6
C-13	48.52 s	(-0.06)	$\mathrm{H}-11 \alpha$	2.52 ddd	(-0.04)	4,4b(ex)	1.2	$15 \alpha, 15 \beta$	12.5
C-14	53.71 d	(-0.06)	H-11 β	2.08 m	(0.01)	$\begin{aligned} & \text { 4b(en), } \\ & \text { 4b(ex) } \end{aligned}$	b	15 α,16 α	8.9
C-15	22.39 t	(-0.01)	$\mathrm{H}-12 \alpha$	1.18 dt	$(-0,01)$	4b(en),5	b	$15 \alpha, 16 \beta$	1.2
C-16	35.90 t	(-0.04)	$\mathrm{H}-12 \beta$	1.88 ddd	(0.00)	5,6 α	9.7	15, 16α	9.5
C-17	220.73 s	(-0.24)	$\mathrm{H}-14$	1.26 ddd	(0.00)	5,6ß	2.1	$15 \beta, 16 \beta$	8.9
C-18	12.97 q	(-0.02)	H-15 α	1.94 dddd	(0.00)	5.8	2.1	$16 \alpha, 16 \beta$	19.3
			H-15 β	1.61 tt	(0.01)	5,11 β	1.8		
			H-16 α	2.09 dt	(0.01)				
			H-16 β	2.46 ddd	(0.00)				
			H-18(3H)	0.96 s	(-0.01)				

a Terms (en) and (ex) express cis- and trans-relationship between individual $\mathrm{H}-4 \mathrm{~b}$ protons and C-5 carbon; ${ }^{\text {b }}$ the J value could not be determined.

Table IV
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR parameters of compound $\mathbf{1 3}$

Chemical shifts, ppm
Coupling constants, Hz

Carbon	$\delta(\mathrm{C})$	Proton ${ }^{\text {a }}$	$\delta(\mathrm{H})$	Hi, Hj		$J^{\text {a }}$	Hi, Hj	$J^{\text {a }}$	
C-1	21.97 t	H-1 α	1.74 m	$1 \alpha, 1 \beta$	14.6		8,9	11.0	(166)
C-2	41.07 t	H-1 β	$1.41{ }^{\text {b }}$	$1 \alpha, 2 \alpha$	2.2	(84)	8,14	10.8	(168)
C-3	214.15 s	H-2 ${ }^{\text {d }}$	2.52 ddd	$1 \alpha, 2 \beta$	6.3	(-34)	9,10	4.8	(-45)
C-4	44.81 t	H-2 β	2.47 ddd	$1 \alpha, 4 \alpha$	0.6		9,11 α	c	(55)
C-4a	30.62 d	H-4 α	2.07 ddt	$1 \alpha, 10$	3.8	(-67)	9,11 β	c	(176)
C-4b	22.64 q	H-4 ${ }^{\text {a }}$	2.75 dd	1 $\beta, 2 \alpha$	11.6	(-158)	$11 \alpha, 11 \beta$	c	
C-5	52.72 d	H-4a	2.33 dddq	1 $\beta, 2 \beta$	2.8	(84)	$11 \alpha, 12 \alpha$	4.1	(-55)
C-6	22.16 t	Me4b	0.97 d	1 $\beta, 10$	12.6	(174)	$11 \alpha, 12 \beta$	3.6	(65)
C-8	38.71 d	H-5	$1.37{ }^{\text {b }}$	$2 \alpha, 2 \beta$	16.7		11 $\beta, 12 \alpha$	12.3	(-175)
C-9	48.08 d	H-6 ${ }^{\text {d }}$	$1.41^{\text {b }}$	$4 \alpha, 4 \beta$	16.0		11 $\beta, 12 \beta$	2.5	(-55)
C-10	46.89 d	H-6	$1.63{ }^{\text {b }}$	$4 \alpha, 4 \alpha$	1.3	(90)	$12 \alpha, 12 \beta$	13.0	
C-11	24.79 t	H-8	1.84 m	$4 \alpha, 5$	1.3		$12 \alpha, 18$	0.7	
C-12	31.55 t	H-9	2.40 m	4阝,4a	11.6	(-151)	14,15 α	5.7	(-35)
C-13	49.27 s	H-10	2.05 dddd	4a,4b	7.0		14,15 β	12.8	(-157)
C-14	51.90 d	H-11 α	$1.43{ }^{\text {a }}$	4a,5	3.6	(-65)	$15 \alpha, 15 \beta$	12.3	
C-15	22.54 t	H-11 β	$1.63{ }^{\text {b }}$	5,6a	c	(-13)	$15 \alpha, 16 \alpha$	9.0	(20)
C-16	35.79 t	H-12 α	1.27 dddq	5,63	c	(-135)	$15 \alpha, 16 \beta$	1.2	(-101)
C-17	220.33 s	H-12 β	1.83 ddd	5,10	5.9	(41)	$15 \beta, 16 \alpha$	9.0	(142)
C-18	14.16 q	H-14	1.48 ddd	$6 \alpha, 6 \beta$	c		$15 \beta, 16 \beta$	8.8	(21)
		H-15 α	1.94 dddd	$6 \alpha, 8$	8.8	(-132)	$16 \alpha, 16 \beta$	19.2	
		H-15 β	1.64 ddt	6阝,8	10.0	(-10)			
		H-16 α	2.10 ddt						
		H-16	2.46 ddd						
		H-18(3H)	0.87 d						

${ }^{\text {a }}$ Torsion angles (in ${ }^{\circ}$) found in crystal are given in parentheses; ${ }^{\text {b }}$ signal position was determined from 2D-COSY spectrum; ${ }^{\text { }}$ the J value could not be determined.

Table V
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR parameters of compound $\mathbf{1 4}$ in CDCl_{3}
Chemical shifts, ppm

Carbon	$\delta(\mathrm{C})$	Proton ${ }^{\text {a }}$	$\delta(\mathrm{H})$	Hi,Hj	$J^{\text {a }}$		Hi, Hj	$J^{\text {a }}$	
C-1	24.51 t	H-1 α	$1.55{ }^{\text {b }}$	$1 \alpha, 1 \beta$	13.0		8,9	10.4	(12)
C-2	43.07 t	H-1 β	1.84 ddd	$1 \alpha, 2 \alpha$	≈ 4.0	(-49)	8,14	11.4	(171)
C-3	213.99 s	H-2 α	2.55 dt	$1 \alpha, 2 \beta$	11.8	(-165)	9,10	5.6	(-36)
C-4	51.25 t	H-2 β	2.38 ddd	$1 \alpha, 10$	≈ 11.8	(-153)	9,11 α	11.7	(-176)
C-4a	37.02 d	H-4 α	2.55 dd	$1 \beta, 2 \alpha$	≈ 4.0	(68)	9,11 β	≈ 4.4	(-59)
C-4b	22.47 q	H-4 ${ }^{\text {a }}$	2.30 dd	1 $\beta, 2 \beta$	4.8	(-47)	$11 \alpha, 11 \beta$	c	
C-5	51.03 d	H-4a	$1.50{ }^{\text {b }}$	1 $\beta, 10$	≈ 0	(89)	$11 \alpha, 12 \alpha$	c	(40)
C-6	36.93 t	Me4b	1.02 d	$2 \alpha, 2 \beta$	16.8		$11 \alpha, 12 \beta$	c	(158)
C-8	36.77 d	H-5	$1.49{ }^{\text {b }}$	$4 \alpha, 4 \beta$	12.7		$11 \beta 12 \alpha$	c	(-76)
C-9	42.32 d	H-6 α	1.75 m	4 α, 4a	10.8	(166)	$11 \beta, 12 \beta$	c	(42)
C-10	49.75 d	H-6ß	$1.46{ }^{\text {b }}$	4阝,4a	1.5	(-76)	$12 \alpha, 12 \beta$	c	
C-11	19.97 t	H-8	$2.12{ }^{\text {b }}$	4a,4b	6.2		$14,15 \alpha$	5.3	(-45)
C-12	28.53 t	H-9	2.29 m	4a,5	c	(172)	14,15 β	12.0	(-169)
C-13	46.75 s	H-10	$1.54{ }^{\text {b }}$	5,6 α	6.4	(-40)	$15 \alpha, 15 \beta$	11.6	
C-14	45.54 d	H-11 α	1.34 m	5,6ß	≈ 12.6	(-160)	$15 \alpha, 16 \alpha$	≈ 8.6	(21)
C-15	23.53 t	H-11 β	$1.52{ }^{\text {b }}$	5,10	≈ 11.8	(175)	$15 \alpha, 16 \beta$	1.2	(-99)
C-16	36.33 t	H-12 α	1.92 m	$6 \alpha, 6 \beta$	12.6		$15 \beta, 16 \alpha$	≈ 9.8	(146)
C-17	221.78 s	H-12 β	1.35 m	$6 \alpha, 8$	2.3	(-108)	$15 \beta 16 \beta$	8.8	(26)
C-18	18.95 q	H-14	$1.62{ }^{\text {b }}$	6ß,8	8.5	(12)	$16 \alpha, 16 \beta$	19.5	
		H-15 α^{\prime}	2.00 m						
		H-15 β	$1.56{ }^{\text {b }}$						
		H-16 α	2.14 dt						
		H-16	2.47 ddd						
		H-18(3H)	0.95 s						

[^2]terpreted as a result of the same α configuration of both protons (H-1 β was shifted by 0.19 ppm only). Additional evidence indicating the opposite proton configuration at C-5 and C-8 followed from their different vicinal coupling constants with the $\mathrm{H}-6 \alpha$ (9.8 and 3.3 Hz) and $\mathrm{H}-6 \beta$ protons (2.9 and 9.3 Hz); c.f. the detailed discussion for compound $\mathbf{6 a}$ and Fig. 1. The final evidence suggesting a 5α configuration was obtained from difference 1D-NOE spectra of the TAC derivative of 12a: irradiation of H-5 led to an NOE enhancement of 9.4% at exo-methylene $\mathrm{H}-4 \mathrm{~b}$-endo, 6.1% for the two-proton multiplet of $\mathrm{H}-6 \alpha$ and $\mathrm{H}-6 \beta$, and finally 2.2% NOE at $\mathrm{H}-1 \alpha$. The ${ }^{13} \mathrm{C}$ NMR spectrum of the TAC derivative of 12a showed a significant downfield shift (13.46 ppm) for the C9-OR carbon, and smaller upfield shifts for $\mathrm{C}-1$ and C-5 (-4.46 and -6.72 ppm) in agreement with literature values ${ }^{12}$. All the data are consistent with the 5α configuration for compound 12a.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compound 11a are summarized in Table III. The opening of ring A in compound 11a influences the geometry of ring B as indicated by the different J values of protons at positions 5, 6 and 8 (see Table III) when compared with compound 6a. TAI acylation confirmed the presence of the $\mathrm{CH}_{2} \mathrm{OH}$ group and enabled the assignment of the protons and carbons of the $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ fragment by comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the original compound and the TAC derivative. The TAI-induced shifts of other protons and carbons were very small or negligible. Difference 1D-NOE ${ }^{1} \mathrm{H}$ NMR spectra of compound 11a were used for assignment of the C-5 configuration. On irradiation of the $\mathrm{H}-8 \beta$ proton, an $\mathrm{H}-6 \beta$ signal was identified at $\delta 1.89$ (2.7% NOE) while no NOE was observed for $\mathrm{H}-6 \alpha$ at δ 2.02. On saturation of $\mathrm{H}-5$, we observed a 5.0% NOE for the exo-methylene protons and an 8.9% NOE at $\mathrm{H}-6 \alpha$ ($\delta 1.65$); significantly, there was no NOE at $\mathrm{H}-6 \beta$ and $\mathrm{H}-8 \beta$. No intensity changes were observed for any other signals, which verifies the 5α configuration for compound 11a.

The NMR arguments on the configurations at carbon atoms C-5, C-9 and C-10 in diketones $\mathbf{1 3}$ and $\mathbf{1 4}$ are based mainly on the NOE contacts and vicinal proton coupling constants (when compared with torsion angles of corresponding protons derived from X-ray data of both isomers). It should be noted that energy minimised conformations calculated by molecular mechanics are very close to X-ray structures (torsion angle of protons differ less than 10°). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of diketones $\mathbf{1 3}$ and $\mathbf{1 4}$ are given in Tables IV and V. Although the character of the ${ }^{1} \mathrm{H}$ NMR spectra did not enable determination of some of the relevant coupling constants, the values of all accessible vicinal $J(H, H)$ are in good agreement with the ring
annelation and geometry derived by X-ray analysis (see below). The multiplet pattern and J values of some overlapping but weakly coupled protons were checked in 2D J-resolved spectrum of diketone 13. For obtaining of a more complete set of coupling constants for diketone 14, its spectrum after addition of a small amount of lanthanide shift reagent (Eu[FOD] ${ }_{3}$) was used. The non-trivial NOE contacts (between non-coupled protons) observed in 2D-NOESY spectra are shown in Fig. 2. They confirm stereochemical assignment of geminal protons in both isomers and configuration $5 \alpha-\mathrm{H}, 9 \alpha-\mathrm{H}, 10 \alpha-\mathrm{H}$ in diketone 13 and configuration $5 \alpha-\mathrm{H}, 9 \beta-\mathrm{H}, 10 \beta-\mathrm{H}$ in diketone 14. The most of the contacts between protons within a distance $<3 \AA$ were detected - the remaining ones could not be assigned unequivocally due to the signal overlap but they are not excluded.

X-Ray Analysis

Compound $\mathbf{1 3}$ was characterized in the solid state by X-ray diffraction (Table VI). The absolute configuration was set by the known configurations of $\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-13$ and $\mathrm{C}-14$. This determined the relative configurations for $\mathrm{C}-4 \mathrm{a} \alpha, \mathrm{C}-5 \alpha$ and $\mathrm{C}-10 \alpha$. A labelled view of the molecule (see Fig. 3) shows that the ring junctions are cis, trans, trans for the $A / B, B / C$ and C / D rings, respectively. All other data, including bond distances, bond angles and torsion angles are included as Supporting Information. Using previously described methods and notation for ring conformation analysis ${ }^{13,14}$, the conformations of the rings are as follows. The seven-membered A ring is in a slightly distorted twist-chair conformation with the C_{2} axis passing

13

14

Fig. 2
Nontrivial NOE contacts observed in 2D-NOESY spectra of diketones $\mathbf{1 3}$ and $\mathbf{1 4}$

Table VI

X-Ray data collection, data processing and refinement results for compound $\mathbf{1 3}$

Crystal data	
Formula	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$
F.w.	288.43
F(000)	632
Crystal dimensions, mm	$0.30 \times 0.40 \times 0.47$
MoK α radiation λ, \AA	0.70930
Temperature, ${ }^{\circ} \mathrm{C}$	23 ± 1
Space group	orthorhombic, $\mathrm{P}_{2} \mathrm{~L}_{1} \mathrm{~L}_{1}$
Unit cell	
a, Å	11.298(1)
b, Å	11.330(1)
c, Å	12.807(1)
\checkmark, \AA^{3}	1 639(2)
Z	4
$\rho, \mathrm{g} \mathrm{cm}^{-3}$	1.17
μ, cm^{-1}	0.7
Intensity measurement	
Instrument	Enraf-Nonius CAD4 diffractometer ref. ${ }^{27}$
Scan type	$\omega-\theta$
Maximum 20, ${ }^{\circ}$	50.0
Number of reflections measured	3210 total, 2879 unique
Structure solution and refinement	
Solution	direct methods
Refinement	full-matrix least-squares (LSFM program, SDP Package)
Minimization function	$\sum \mathrm{w}\left(\left\|\mathrm{F}_{\mathrm{o}}\right\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right)^{2}$
Least-squares weights	$4 \mathrm{~F}_{0}^{2} / \sum^{2}\left(\mathrm{~F}_{0}^{2}\right)$
Anomalous dispersion	all non-hydrogen atoms
Reflections included	2592 with $\mathrm{F}_{0}^{2}>3.0 \sigma\left(\mathrm{~F}_{0}^{2}\right)$
Parameter refined	190
Unweighted agreement factor	0.042
Weighted agreement factor	0.061
High peak in final difference map, $\mathrm{e}^{-1} \AA^{-3}$	0.46(4)
Low peak in final difference map, $e^{-1} \AA^{-3}$	-0.25(4)
Computer software	SDP/VAX (Enraf-Nonius) ref. ${ }^{28}$, SHELXS96 ref. ${ }^{29}$

through $\mathrm{C}-3$ and the $\mathrm{C} 5-\mathrm{C} 10$ bond, with $\Delta \mathrm{C}_{2}(\mathrm{C}-3)=7.5^{\circ}$. The ring B is in a half-chair conformation, with $\phi_{\max }=47.3^{\circ}$ and $\Delta \mathrm{C}_{2}(\mathrm{C}-6)=4.2^{\circ}$. The ring C is in a nearly ideal chair conformation with $\Delta \mathrm{C}_{\mathrm{s}}(\mathrm{C}-9-\mathrm{C}-11)=3.9^{\circ}$. The ring D is in an envelope conformation with $\Delta C_{s}(C-14)=8.1^{\circ}$ and $\phi_{\max }=45.0^{\circ}$.

EXPERIMENTAL

Compounds

Steroid compounds: 6 6 -Chloro-5-methyl-17-oxo-19-nor-5 β-pregn-9-en-3 β-yl acetate ${ }^{15}$ (4), 4a-methylidene-17-oxo-4a-homo-7,19-dinor-5 α-androst-9-en-3 β-yl acetate ${ }^{16}$ (6a), 17,17-ethylene-dioxy-5-methyl-19-nor-5 β-androst-9-ene-3 $3,6 \beta$-diyl 3 -acetate 6 -mesylate ${ }^{10}$ (7), 4a-methylidene-4a-homo-7,19-dinor-5 α-androst-9-ene-3ß,17 β-diol ${ }^{9}$ (8a), 4-methyl-4-methylidene- 7,19-dinor-3,4-seco-5 α-androst-9-ene-3,17ß-diol ${ }^{17}$ (10a), 3-hydroxy-4-methyl-4-methylidene-7,19-dinor-3,4-seco-5 α-androst-9-en-17-one ${ }^{17}$ (11), 3 β,10-epoxy-4a-methylidene-4a-homo-7,19-dinor-5 α -androstane-3 $\beta, 17 \beta$-diol ${ }^{9}$ (12a), 4a β-methyl-4a-homo-7,19-dinor- $5 \alpha, 10 \alpha$-androstane-3,17dione ${ }^{17}$ (13) and 4a α-methyl-4a-homo-7,19-dinor-5 $\alpha, 9 \beta$-pregnane-3,17-dione ${ }^{10}$ (14) were prepared as previously described. A single crystal of the compound $\mathbf{1 3}$ was grown slowly from a dilute solution in acetone and heptane.

NMR Spectroscopy

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian UNITY-500 instrument $\left({ }^{1} \mathrm{H}\right.$ at 500 MHz and ${ }^{13} \mathrm{C}$ at 125.7 MHz) in CDCl_{3} with TMS as an internal reference. The absolute-value ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ 2D-COSY spectra ${ }^{18,19}$ were obtained with spectral width 5 kHz , pulse width $13 \mu \mathrm{~s}$ $\left(90^{\circ}\right)$, relaxation delay 1 s , acquisition time 0.17 s . Four free induction decays (FIDs) were acquired for each of 416 time increments and the data matrix was zero filled to 2048×2048

Fig. 3
Perspective view of compound $\mathbf{1 3}$ with atom numbering scheme showing absolute configuration of C-5 to be 5α
data points. A sine-bell weighting function was used before Fourier transformation (FT) in both dimensions.

The 2D-J-resolved ${ }^{1} \mathrm{H}$ NMR spectrum ${ }^{20}$ of compound 13 was recorded at $50{ }^{\circ} \mathrm{C}$ using spectral width 2 kHz in F_{2} and 50 Hz in F_{1} dimension and acquisition time 0.14 s . The 16 FIDs were collected for each of 64 time increments, zero-filled to 2048×256 data matrix and sine-bell-weighed before FT.

Nuclear Overhauser enhancements (NOE) in compounds 6a, 13a and 14a were determined by the difference method using selective irradiation of individual protons during the time period (6 s) before data acqusition. Reference spectra taken under the same conditions but with the irradiation frequency off-resonance, were subtracted to give the difference spectra. The NOE for each signal was quantified using the intensity of the saturated peak in the difference spectra as a reference having its area as 100% and integrating the enhanced peaks relative to this scale.

2D-NOESY spectra ${ }^{21,22}$ of compounds 13 and 14 were measured with spectral width 2 $400 \mathrm{~Hz}, 90^{\circ}$ pulses ($13 \mu \mathrm{~s}$), mixing time 0.7 s , acquisition time 0.213 s and relaxation delay 3 s. The 16 scans were collected for each of 200 time increments. Data were zero-filled to final data matrix $4 \mathrm{k} \times 4 \mathrm{k}$ data points and a gaussian apodisation function applied before FT.

Proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra were measured using the "attached proton test" (APT) sequence ${ }^{23,24}$ with spectral width 32 kHz , pulse width $6 \mu \mathrm{~s}\left(30^{\circ}\right)$, acquisition time 1 s and relaxation delay 1 s . Zero filling to 64 k data points and exponential function with a line broadening 1 Hz was applied before FT.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlated HMQC spectra ${ }^{25}$ were acquired with indirect probe in a phasesensitive mode (hypercomplex method ${ }^{26}$) using BIRD filter (null delay 0.5 s) and ${ }^{13} \mathrm{C}$ GARP decoupling. Relaxation delay was $1.6 \mathrm{~s}, 90^{\circ}$ pulse $19 \mu \mathrm{~s}$ for ${ }^{1} \mathrm{H}$ and $24 \mu \mathrm{~s}$ for ${ }^{13} \mathrm{C}$, spectral width 4.1 kHz in $\mathrm{F}_{2}\left({ }^{1} \mathrm{H}\right)$ and 20 kHz in $\mathrm{F}_{1}\left({ }^{13} \mathrm{C}\right)$, 32 scans collected for each of 360 increments, data matrix 1344×720 was zero-filled to $2 \mathrm{k} \times 1 \mathrm{k}$ and apodization with $\pi / 2$ shifted sinebell was used in both dimensions before FT.

In situ TAI acylation ${ }^{11,12}$ of the hydroxy compounds 11a and 12a was done by addition of trichloroacetyl isocyanate (small excess) to the CDCl_{3} solution in the NMR sample tube. The TAC derivatives were characterized by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

X-Ray Crystallography

The crystallographic methods employed and data for compound $\mathbf{1 3}$ are summarized in Table V. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC-128199. Copies of the data can be obtained free of charge on application to CCDC, e-mail: deposit@ccdc.cam.ac.uk.

The authors wish to thank Dr J. Zajíček for helpful discussions and Dr R. Glass and Dr R. Polt for commenting on the manuscript. This research was supported by the U.S. National Institutes of Health, by the Grant Agency of the Czech Republic (grant No. 505/94/009) and by the Ministry of Education of the Czech Republic (grant No. LB98233).

REFERENCES

1. Slavíková B., Kasal A.: Collect. Czech. Chem. Commun. 1999, 64, 1479.
2. Baulieu E. E.: Horm. Res. 1987, 28, 181.
3. Kasal A., Stárka L., Hampl R., Bičíková M.: Exp. Clin. Endocrinol. 1985, 86, 297.
4. Stárka L., Hampl R., Kasal A. in: Receptor-Mediated Antisteroid Action (M. K. Agarwal, Ed.), p. 17. Walter de Gruyter, New York 1987.
5. Cunningham G. R., Tindall D. J., Lobl T. J., Campbell J. A., Means A. R.: Steroids 1981, 38, 243.
6. Kasal A., Hampl R., Bičíková M., Stárka L.: Steroids 1992, 57, 460.
7. Kasal A., Buděšínský M.: Collect. Czech. Chem. Commun. 1975, 40, 1231.
8. Kasal A., Zajíček J.: Collect. Czech. Chem. Commun. 1986, 51, 1462.
9. Kasal A., Zajíček J.: Collect. Czech. Chem. Commun. 1989, 54, 1327.
10. Kasal A., Zajíček J., Podlaha J.: Collect. Czech. Chem. Commun. 1991, 56, 1070.
11. Samek Z., Buděšínský M.: Collect. Czech. Chem. Commun. 1979, 44, 558.
12. Bose A. K., Srinivasan P. R.: Tetrahedron 1975, 31, 3025.
13. Duax W. L., Weeks C. M., Rohrer D. C.: Top. Stereochem. 1976, 9, 271.
14. Altona C., Geise H. J., Romers C.: Tetrahedron 1968, 24, 13.
15. Mihina J. S.: J. Org. Chem. 1967, 27, 2807.
16. Kasal A.: Collect. Czech. Chem. Commun. 1989, 54, 2218.
17. Kasal A.: Collect. Czech. Chem. Commun. 1989, 54, 1318.
18. Aue W. P., Bartholdi E., Ernst R. R.: J. Chem. Phys. 1975, 64, 2229.
19. Nagayama K., Kumar A., Wüthrich K., Ernst R. R.: J. Magn. Reson. 1980, 40, 321.
20. Aue W. P., Karhan J., Ernst R. R.: J. Chem. Phys. 1976, 64, 4226.
21. Jeener J., Meier B., Bachmann P., Ernst R. R.: J. Chem. Phys. 1979, 71, 4546.
22. Kumar A., Wagner G., Wüthrich K., Ernst R. R.: J. Am. Chem. Soc. 1981, 103, 3654.
23. Le Cocq C., Lallemand J. Y.: J. Chem. Soc., Chem. Commun. 1981, 150.
24. Patt S., Shoolery J. N.: J. Magn. Reson. 1982, 46, 535.
25. Bax A., Subramanian S., Bax A.: J. Magn. Reson. 1986, 67, 565.
26. States D. J., Haberkorn R. A., Ruben D. J.: J. Magn. Reson. 1982, 48, 286.
27. CAD4 Operations Manual. Enraf-Nonius, Delft 1977.
28. Frenz B. A. in: Computing in Crystallography (H. Schenk, R. Olthof-Hazelkamp, H. van Konigsveld and C. G. Bassi, Eds), p. 64. Delft University Press, Delft 1978.
29. Robinson W., Sheldrick G. M. in: Crystallographic Computing 4 (I. N. W. and M. R. Taylor, Eds), p. 175. Oxford University Press, Oxford 1985.

[^0]: + Part CDV in the series On Steroids; Part CDIV see ref. ${ }^{1}$

[^1]: a Terms (en) and (ex) express cis- and trans-relationship between individual H-4b protons and C-5 carbon; ${ }^{\text {b }}$ signal position was determined from 2D-COSY spectrum; ${ }^{\mathrm{c}}$ the assignment of signals may be interchanged.

[^2]: ${ }^{\text {a }}$ The J values obtained from the spectrum after addition of Eu[FOD] ${ }_{3}$; torsion angles (in ${ }^{\circ}$) found in crystal (ref. ${ }^{10}$) are given in parentheses; ${ }^{\text {b }}$ signal position was determined from 2D-COSY spectrum; ${ }^{\text {c }}$ the J value could not be determined.

